Conference Report: 43rd Space Congress, Part 2

Part 1

Part 2

Part 3

Part 4

Part 5

It’ll take a while for me to get through all of the sessions I recorded, but bear with me: there was some good stuff to be learned. The following two sessions were hosted on the afternoon of April 28.

Panel: KSC’s Transformation to a Multi-User Spaceport

Tom Engler from KSC‘s Center Planning and Development (CPD) Office kicked off this session by sharing the Ground Systems Development and Operations (GSDO) vision for the future of NASA’s Florida spaceport. GSDO’s primary mission is to upgrade the Center’s facilities and hardware to support both the agency’s upcoming vehicles–Orion and SLS–as well as future commercial customers. Engler explained that GSDO has two elements to it: Exploration Ground Systems (EGS) and the 21st Century Space Launch Complex (yet another acronym, 21CSLC). These two groups are responsible for upgrading or completely rebuilding iconic sites and equipment such as the Mobile Launch Platform, Launch Complex 39B, Vehicle Assembly Building, and the Crawler-Transporter.

As I mentioned in my previous entry, High Bay 3 in the VAB is slated to support the Space Launch System (SLS) while High Bay 2 will be refitted to support commercial customers. Much of High Bay 2 has been completely gutted, with the multi-level platforms originally built for Apollo and modified for Shuttle now refitted with adjustable inserts capable of supporting multiple launch vehicles. The Crawler-Transporter is being modified to carry up to 18 million pounds for SLS vehicles, as opposed to its previous 12 million-pound limit for Shuttle. Additionally, Launch Complex (LC) 39B will feature a “clean pad” layout, with most of the launch vehicle servicing and assembly happening in the VAB and the service tower added to the mobile launch pad, rather than being a permanent fixture out in the Florida seabreeze.

Other construction projects include a new flame trench under LC 39B, a new small-class launch site in one corner of the 39B complex, as well as updates to Control Room 4 in the Launch Control Center (LCC) to support commercial operations…and GSDO still isn’t finished. Other old equipment is being upgraded, including the data uplink station, gaseous nitrogen pipeline, and wind profiler. If there isn’t a lot of fire and smoke happening at KSC now, by 2017, there will be…a lot!

The next speaker, Darren Bedell, was from NASA’s Launch Services Program (LSP). LSP is a NASA service that helps uncrewed payloads–both NASA and NASA-sponsored satellites and planetary missions–find launch vehicles to ride. They have been busy acquiring launch vehicles for multiple missions, including SMAP, DSCOVR, MMS, and Jason-3. In addition to these missions, LSP is now looking at launch vehicles for “Venture Class” (small) Earth observation missions; however, the organization is capable of identifying launch vehicles for payloads ranging from cube sats (~4 cubic inches/10 cubic centimeters) to something the size of a school bus.

Lisa Colloredo, Associate Manager for the Commercial Crew Program, walked the audience through the various phases NASA has gone through to get from experimenting with commercial launch vehicles (CCDev1) to commercial crew services. She explained that the goal of the commercial cargo and crew efforts has been to ensure that they meet safety and performance requirements without being too prescriptive beyond that. Companies that were awarded commercial crew/cargo contracts–Boeing and SpaceX–are guaranteed a minimum of two launches per contract.

Colloredo also made a point of explaining that NASA did not mandate a specific launch site or facility for commercial crew delivery. The point being, commercial launch services are not obligated to use KSC–a point of which the Center is keenly aware.

Other updates included:

  • SpaceX will be conducting a pad abort test May 5. They are pushing for their first crewed flight in late 2016, with crewed flight certification coming in 2017.
  • LC 39A is being modified to support Falcon 9 and Falcon 9 Heavy.
  • SpaceX is building a Horizontal Processing Facility at the LC 39A site.
  • KSC is still working with Sierra Nevada Corporation and Blue Origin on their launch vehicles even though they did not win the commercial crew contracts.

Bill Dowdell from KSC’s Exploration Research & Technology Program took some time to discuss the Center’s science and technology efforts. These included the BRIC-21 mission, which studied the resistance of microbes to antibiotics in zero gravity; the Portable Onboard (three-dimensional) Printer (POP-3D) on the International Space Station; the use of carbon nanotubes on the Astrobiology Exposure and Micrometeoroid Capture Experiments (ExHam) mission; and the Next Space Technologies for Exploration Partnerships (NEXTSTEP) program.

Bottom line: KSC is multitasking as much as it can to meet current and future space launch needs.

Paper Presentations: Spinoffs from Space Technology

I’ll confess, I didn’t pay as close attention to this session as I could have. However, I did note some interesting statistics from NASA’s Spinoff (Technology Transfer) office. At present, the program has generated the following results:

  • Over 1,100 active patents
  • Over 400 NASA Tech Brief articles
  • Over 300 active patent licenses (i.e., private-sector companies licensed to use NASA-developed patents)
  • Over 18,000 jobs
  • Over $5 billion in revenue

Companies interested in learning about the types of technologies NASA has patented can visit the Technology Transfer Portal. The general process spinoff inventions follow is:

  1. Develop
  2. Patent
  3. Solicit interest from the private sector
  4. Start discussion(s) with interested company(ies)
  5. Negotiate license

The rest of the session was devoted to two success stories:

A third presentation in this session reviewed the KSC “Swamp Works” technology team’s efforts to create simulated lunar regolith (another word for dirt found on any planet besides Earth) in an effort to facilitate in situ resource utilization (ISRU) on future exploration missions. The point of ISRU is to use on-site materials on the Moon, Mars, or other celestial bodies for useful functions, such as metals to build tools or habitat shielding or water ice to make water for drinking, hydrogen and oxygen for propellant, or other crew purposes.

Conference Report: 43rd Space Congress, Part 1

Part 1

Part 2

Part 3

Part 4

Part 5

I’m spending some quality time at the 43rd Space Congress on the Space Coast learning what sorts of space activities are going on in the neighborhood of Kennedy Space Center. Short version: a lot!


The Congress has apparently been a longstanding institution on the Space Coast (run since 1969), but it went off the radar after 2010, the year the Shuttle Program and Constellation were shut down. The event has been resurrected by the Canaveral Council of Technical Services and other local organizations. They’ve managed to bring in a lot of smart, informative speakers. A shame it isn’t being better attended.

In parallel with the Congress, some folks associated with the local chapter of the Project Management Institute are hosting some classes about topics like managing in an Agile software development environment. Since I arrived ridiculously early, I sat in on the Agile Development session, learning quickly that I’m not wired for that stuff, but the speaker had a solid command of his subject. He’d better: he was promoting his business, which provided test preparation for the PMI-Risk Management Professional exam.

NASA & Air Force Innovation at Cape Canaveral Spaceport

Cape Canaveral Spaceport” is a relatively new name for the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) complex, which is presented to potential launch customers as a single entity. This panel discussed the efforts being made by the two “sides of the house,” NASA and the Air Force, as well as Space Florida, to promote the Spaceport. The participants included Mark Bontrager, a Space Florida Vice President; Tom Eye, Director of Plans & Programs from the 45th Space Wing; and Scott Colloredo, who’s Director of KSC’s Center Planning & Development Group.

Bontrager kicked things off by assessing the economic environment the Spaceport faces now compared to the environment 35 years ago. In 1980, the U.S. controlled 100% of the world commercial space launch market. By 2010/2011, that domination had been completely lost, with zero U.S. commercial launches in those years. Things have changed in the last five years, with SpaceX, Orbital ATK, and other commercial providers springing up or actually providing launch services.

In response to this uptick in commercial launch providers, Space Florida–an entity created by the State of Florida to facilitate commercial space activity here–has been helping fund infrastructure that allows space-tech firms to get established on the Space Coast. Much of this infrastructure has come in the form of converting unneeded Space Shuttle buildings like the Orbiter Processing Facilities (OPFs) into places where the X-37B and CST-100 can be processed for flight.

Tom Eye, in discussing the Air Force side of things, was quite proud of the fact that over 800,000 square feet of office space has been leased or given to space-related businesses at CCAFS. In addition, Launch Complexes 37 and 41 are being run by United Launch Alliance, LC 40 is being used by SpaceX to launch Falcon 9 while LC 13 is being set up for SpaceX to land first stage boosters. LC 36 and 46 are being administered by Space Florida. The Shuttle Landing Facility (SLF) is being looked at by multiple customers. And while all this activity–real and potential–is happening, NASA needs to upgrade its launch infrastructure. There were 18 launches at CCAFS in 2014; there are 26 on the manifest for this year; and 2016 could see 30+ launches. That’s a lot of work ahead, but it’s exciting. Eye explained that 57% of launches at CCAFS are now commercial.

Meanwhile, on the NASA side of the house, there isn’t so much fire and smoke–yet–but a lot of construction is underway. Scott Colloredo laid out KSC’s vision to become a “multi-user spaceport,” supporting NASA’s future missions like SLS/Orion, transferring ownership of unneeded facilities to commercial users, and operating “leaner and greener.” KSC has been busy converting OPF-1 and -3 for Boeing as well as the Vehicle Assembly Building’s High Bay 2 for other potential commercial users. Launch Complex (LC) 39A is being leased to SpaceX for Falcon 9 and Falcon 9 Heavy launches.

Meanwhile, to keep its commercial customers happy, Space Florida has been helping commercial launch providers by working with NASA to streamline safety and other requirements. The point is not to provide someone like SpaceX or Boeing with a 500-page prescriptive document for how they must run their operations, but instead give them a shorter list of requirements, which say things like “Must be compliant with OSHA and FAA regulations.” Another strategy Space Florida is pursuing is long-term agreements with commercial launch providers to give them time to build a sustainable business. SpaceX, for example, has a 20-year agreement with NASA to get things rolling at LC 39A. In addition to the more well-known entities, KSC is building two new launch sites near LC 39 to support small satellite launchers. Not much of this makes fire and smoke–but it will in the next few years. SpaceX is hoping to launch Falcon 9 from LC 39A by 2017.

All of this speaks well of the Spaceport’s future prospects, but the panel still cautioned the audience not to expect a 16,000-person civil service workforce like the Space Coast had during the Shuttle era. Still, it’s a far cry from the dark days of 2010, when KSC faced the end of the Shuttle program, the cancellation of its follow-on Constellation, and a drastic downsizing of the civil service and contractor workforce. In short, the Space Coast is not “closed.”

Emerging State/Local Government Roles in Space

Jim Ball, a consultant with Spaceport Strategies, LLC, started off his talk by explaining the obvious: “This is not your father’s space industry.” Indeed, in addition to the resurgence of American commercial launch providers, other states are starting to building spaceports of their own to lure some of that business to their region. At present, New Mexico, Alaska, and Virginia have built spaceports. Texas is “in the game, but not operating yet,” and other states believe they can host spaceports of their own once reusable vehicles make it safe to do so. In short, KSC’s natural advantages–relative proximity to the Equator, open ocean, useful launch azimuth directions, and suitable port facilities–are not necessarily enough to guarantee that launch providers will automatically look to Florida as a place to do business.

Ball explained that launch service providers have a long laundry list of things they want from a state before they set up shop. On the technical side of things, they want a safe, license-able site that is operationally suitable for their needs and with access to infrastructure (highways, seaports, airports, etc.). On the business side of things, they want assurance that they will be able to launch on time, that they have launch decision authority, and that they have a reasonable amount of autonomy in how they conduct their operations. Their top three priorities, according to Ball, are unencumbered access to their facilities and equipment, commercial standards for launch operations, and operational flexibility. Like any other businesses, they want some consistency in regulations, rules, and taxes.

The State of Florida, recognizing the need to bring in more customers once it was confirmed that Shuttle was retiring, established Space Florida out of three separate state entities to smooth the way for commercial entities to do business in the state. To that end, this quasi-state organization (“a county without geography” was one colorful description I heard today) has a charter to promote and grow Florida’s space industry and capabilities; identify, plan, and fund space infrastructure; own, manage, and operate Spaceport Florida; and of course ensure public safety. Other states will establish similar entities eventually, but for now Florida is unique in creating this organization.

Keevin Williams, a VP of Special Projects at Space Florida, focused on the financing and regulatory efforts Space Florida has promulgated in support of the space industry. To that end, the Florida legislature has put spaceflight informed consent laws into effect; as well as a research and development tax credit for space-tech companies. In 2008, the Florida Growth Fund was empowered to invest up to 1.5% of the Florida pension fund in high-tech companies, including space entities. Meanwhile, the Florida Opportunity Fund makes $500K-$2M investments in small companies. In addition to these financial votes of confidence, Space Florida has facilitated the hand-over of Shuttle Program facilities to commercial industry, leaving them to pay only operations and maintenance fees so they can concentrate on developing their technologies. Williams describes much of what Space Florida does for the space industry as “blocking and tackling” regulatory and financial problems.

Leigh Holt, who has advocated for the space industry at the county level, explained that all these policies have become institutionalized into the Florida law books and budget by convincing the legislature that space infrastructure is, in fact, a transportation service, akin railroads or highways. Money for space is always scarce, but the highway budget in Florida is well funded, which might explain why we have construction year-around. A $1.5M line item for “space” gradually morphed into a $22M transportation infrastructure item. These sorts of changes occurred at the local level because Space Florida and NASA couldn’t and wouldn’t “lobby” for them.

And while this forward-thinking legislation and funding puts Florida out ahead of the other 49 states, a lot of the space-friendly lawmaking was born out of the panic that ensued once the locals in Brevard County realized that Shuttle was going away. The area had suffered massive layoffs and a long recovery period after the end of the Apollo program, and the locals were determined to prevent a repeat of that downsizing as much as possible. They haven’t been completely successful, but the current state of business on the Space Coast owes a lot to the efforts Space Florida has made and to the successes of SpaceX.

These two panel sessions provided great background for understanding the state of the space business here in Central Florida. I will share other insights in the near future. But for now, I must crash. Back at it again tomorrow. Part 2 can be found here.

Why Space?

Occasionally someone will ask, so below are the reasons I’ve supported space exploration–particularly human space exploration–as an eminent good worth pursuing.

Economic & Intellectual Growth

I think space exploration–the robotic and human variations–leads to economic growth because people must be employed and equipment must be designed and built to make the journey happen. Because of the unique environment of space itself as well as the planets in our solar system, that hardware must meet unusually high standards of performance that are never required on Earth. However, once the technologies are developed for exploration elsewhere, those high standards can and do result in better tools here on Earth.

I also responded to philosophy professor Gonzalo Munevar’s concept of serendipity, wherein discoveries made in space only afterward become useful intellectual “spinoffs” when someone realized that a knowledge gained in one place could be useful for a more practical problem here on Earth. Moreover, the continued scientific exploration of the space frontier changes science itself and causes those who practice it to change the nature of the questions they ask and answer. Those types of changes have happened throughout human history.

The Potential for Improving Our World

One anti-space argument I hear often is, “We shouldn’t explore space because a) we haven’t made Earth perfect yet or b) we have screwed up Earth so badly.” Argument a) is ridiculous, as the “perfection” of Earth is either physically or socially impossible, especially if the definition of “perfection” keeps changing. Argument b) assumes that the listener will accept the “guilt” of humanity in permanently screwing up our home planet. I don’t guilt that easily, as there are innumerable amazing and positive changes and works of art and science that would never have happened without the presence of humans. Yes, we’ve done (and continue to do) bad things, from clear-cutting forests to pollution. But we also have the ability to take action to fix those problems, and space exploration has given us the realization that we need to do something (think of the Apollo 8 Earthrise photo) and in some cases space exploration provides us with the tools to fix the problems.

600px-Apollo_10_earthriseOne can look at space-based solar power as one potential energy source that could improve the level of pollution put out by hydrocarbon fuels.

During the last Iraq war, a water filtration system originally designed for the International Space Station was installed in a village in Iraq to provide clean water for the people living there.

NASA technologies used for exploration have been turned around and used to treat cancer.

Now I know some people get tired of hearing the “spinoff” argument–and I’m not certain about the actual rate of inventions anymore. However, it is my contention that just spending money directly on an Earth-based problem will only result in a refinement of an existing technology rather than applying a wholly new technology to a problem like cancer. Or any other problem.

Inspiration & Other Human Reasons

Space exploration is, for me, one of the most challenging, inspiring actions humans can perform. It speaks to our willingness to explore, to investigate, to learn, to reach beyond our current abilities, to develop ingenious devices capable of solving complex problems. Some day, it will lead to human beings building homes, families, and whole new ways of life beyond the world of our birth.

And yes, we will no doubt take our conflicts with us out there–our fears and doubts and religions and competitions and paranoias and poor judgment. We will go for science and we will go for wealth. We will go to find new and better ways of life and no doubt some will go for power. But all the same, we will be who we are, and we will make supreme efforts to survive in unreal and dangerous environments because that is part of what we do. The effort will not radically change who or what we are in the near term, but in the long term we might learn how to ask new and better questions of ourselves, and that’s an adventure worth attempting.

Playing Astronaut vs. Simulating Exploration

Last night, I attended, as part of Yuri’s Night festivities, a public panel discussion related to the 5th International Workshop on Lunar Surface Applications. Sounds like a mouthful. What was it for?

Think about the last time human beings explored another world. Okay, you might be too young for that. It was during the Apollo program, 1969-1972. Before we sent astronauts to the surface of the Moon–the first time that had ever happened in human history–we had to give the men in the lunar lander some idea of what to expect an how to react. Exploration is risky because people die from unexpected hazards: uncertain ground, strange creatures, bad weather. So the astronauts were prepared in a variety of ways, from spending days and weeks at a time in a cramped flight simulator to hanging them sideways with bungee cords to help them feel simulated lunar gravity to trekking through the wilderness for survival training.

We have similar training hardware for astronauts going to the International Space Station, but exploration of other worlds is an art we’re slowly relearning. And the Moon is only one possible destination. There are plans to send people to asteroids and Mars, which are different landscapes from the Moon with different gravities and with much longer transit times…months instead of days or weeks. Scattered across the globe, you can find simulated space exploration habitats, where human beings are learning how to live on other worlds. It’s about a whole lot more than just “playing astronaut.”

The participants, hosted by the inestimable Ryan Kobrick, included:

Each of the individuals on the panel discussed their experiences at these habitats, each with its own level of realism to simulate (or create analogues of) specific aspects of space exploration.

Jason Schuler/Desert RATS & Swamp Works

Since 2009, NASA has been operating 7-10-day simulations for lunar exploration hardware. Jason Schuler, a robotics engineer at Kennedy Space Center, has participated in KSC’s “Swamp Works” team, which contributes to the effort. They send a group of engineers and astronauts (or NASA people who would like to be astronauts) to work with prototype or simulated crew habitats, vehicles, and field equipment.

Simulated Space Exploration Vehicle (Source: NASA)

The simulation area is often terrain that resembles the Moon or Mars, such as lava flows, craters, or deserts. The “crew” have to live in close-quarters habitats and wear “spacesuits” when they go outside, just as they would on the Moon. They try to perform specific tasks, such as conduct science experiments or build a spacecraft landing pad. They also experience simulated “emergencies.” During one such drill, a two-vehicle mission crew had to cram into one vehicle and spend the night inside one vehicle.

Annie Caraccio/HI-SEAS

Way up in the thin, dry, non-tourist-friendly parts of Mauna Loa on Hawai’i’s Big Island, you can find the Hawai’i Space Exploration Analog and Simulation (HI-SEAS). Here, in the shadow of the world’s tallest mountain (base to summit, taller than Mt. Everest), Mauna Kea, NASA has built a simulated Mars base. Here, participants go through a competitive process akin to astronaut down-selecting before they ever get to join: personality tests, physicals, survival training, psychological testing, etc. Once there, they are signed up for 120 days or more. Like Desert-RATS, the crew must put on a simulated spacesuit to step outside. They experience a 40-minute communication delay, which is similar to the light-speed delay that would happen at Mars.

HI-SEAS Habitat
HI-SEAS Habitat (Source: HI-SEAS)

Quarters are cramped, but the science and engineering goals are real. Annie Caraccio, a KSC chemical engineer, spent her four-month stint on top of Mauna Loa working out ways to reduce or reuse waste on space missions. On the International Space Station, you can wad up trash into football-size packets in plastic bags and drop it into the atmosphere, where it burns up upon reentry. That option is not available on the Moon or Mars. So what do you do with it? Annie was looking into using some of the waste as fuel for a reactor of some kind (think Mr. Fusion on the back of the DeLorean at the end of Back to the Future).

The trick? The garbage reactor only works with specific types of waste. So Annie got the notion of asking her fellow “astronauts” to separate their trash into organic, plastics, an metal–much like we do here on Earth. As you might suspect, compliance was not 100%, leaving Annie to do some more thinking about what NASA calls “human factors.”

She and her team also poked around the Mauna Loa summit for lava tubes, which could–on the Moon or Mars–be used to house habitats sheltered from radiation.

Despite all this focus on technology, HI-SEAS actually started as a psychological study, focusing on things like cognition, group cohesion, biopsychosocial behavior (whatever the heck that is), and individual adaptation in an isolated, time-delayed environment. These are aspects of long-term space exploration that we need to study now.

Tom Potts/Aquarius

One environment that closely resembles many aspects of space exploration is underwater. Submerged five miles off the southeast coast of Florida, the Aquarius Reef Base serves as a long-term underwater lab for simulating exploration. Crew members use saturation diving, in which divers’ tissues are saturated with nitrogen. This allows crew members to work underwater longer. The risk of the bends is less, but it takes 17 hours for them to decompress before they return to the surface.

Swimming underwater is akin to weightlessness–NASA uses it to train its astronauts. Being in a pressurized steel can for days or weeks at a time is akin to being in a submarine or a spacecraft.

AquariusAgain, the crews are doing actual science. Unlike HI-SEAS or the Flashline Mars Arctic Research Station (to be discussed shortly), communications are real-time, and the crew have wireless internet. Once a NASA program, Aquarius is now managed by Florida International University.

Ryan Kobrick, Mars Society Research Stations

Since 2001, the Mars Society has been operating a Mars mission simulator in the most Mars-like environment they could find on Earth: Haughton Crater on Devon Island, in the Nunavut Province of Canada. How realistic is it? 75 degrees North latitude, an arctic desert, with a massive meteor crater, an temperatures that can drop to -40 degrees (“Fahrenheit or Celsius,” Ryan quipped. “It doesn’t really matter at that point”). Communications–especially internet–are delayed 20 minutes. Given that the teams operate in polar summer, the sun is up 24/7, allowing them to simulate a polar mission on Mars.

The habitat is a two-story “tin can” akin to a spacecraft Mars Society President Robert Zubrin postulated in his 1996 book //“>The Case for Mars. The mission participants–who will go anywhere from two weeks to four months–wear simulated spacesuits, of course, though they also have an observer with them who is wearing simple arctic winter gear…an a rifle, in case there’s a polar bear nearby. But here, again, the teams are doing engineering work or performing field science, such as drilling for cores of the permafrost.

Ryan’s team even simulated a Martian “day” for a month, adding 39 minutes to their day. After a week of feeling jet lagged, they learned to like it, as it gave them more time to work.

The Mars Society also runs a Desert Research Station in the high desert of Utah, where crews going to Devon Island spend a couple of weeks training before they head for the frozen north. And yes, they follow the same rules as they do on Devon Island, but if there’s a problem, help is closer to reach. The closest airport is an hour away from the arctic station, assuming the airport is operating and has a plane available.

Cady Coleman, Antarctica/ISS

The obvious star of the evening was Cady Coleman, a NASA astronaut who has done Space Shuttle missions and a tour on the International Space Station. She was fascinated by the Earth-based simulations and interested in doing a couple of them herself (she’s been on the NEEMO mission on Aquarius). But obviously she was one up on everybody, as she’d actually spent three months on ISS in space, which is the point of all these Earth-based exercises.

Coleman also has spent time in Antarctica, on the other side of the world from Devon Island, collecting meteorites. Her insights were worthwhile, with most of the audience members curious about crew dynamics–how people got along–on the Station. In the end, I suppose, that curiosity is inevitable: human spaceflight is all about humans going out and doing things out on the frontier. If we were only going to send robots, the question of how people get along wouldn’t come up because robots just obey orders. We humans can be a cranky lot, especially when we’re in a strange, unfamiliar, or uncomfortable environment away from many of the support systems we take for granted here on Earth.

Source: NASA

While NASA doesn’t exactly hide the potential downsides or conflicts that can occur among ISS crews, they’re inevitable. Coleman, diplomatically, explained some of the social work-arounds that her crew developed. For example, one of her Russian crewmates “clearly had never worked with women before” and would not answer any of her questions unless she got very insistent. The work-around became: the other Russian astronaut would often have the same question Coleman did, so he would ask his compatriot the same question, and they would get the answer that way.

Coleman also mentioned some friction she experienced while hunting for meteorites in Antarctica. She was getting cranky about things one of her crewmates was doing, but then stopped herself, realizing where she was. In Antarctica, as in space, she said that “the mission is so compelling,” it overrides most of the minor social issues.

Closing Thoughts

The evening closed with a good question: “What do we still need to work on before we get a base on the Moon?” The primary answer was: logistics. That encompasses everything from identifying how much stuff really needs to be sent up with a crew to ensuring that what they send is the correct stuff for them to perform their mission. A lot of hope was being placed on In Situ Resource Utilization (ISRU), a fancy NASA term for using resources on the Moon, Mars, or elsewhere so that the crew doesn’t have to bring everything with them. There was some grumbling about money, which is always tight. There’s a lot of debate about whether NASA is being funded appropriately to even attempt deep-space exploration. Ryan Kobrick got the last word in, suggesting that we just need to take more risks: “Less complaining, more doing!”

Are You the Person You Were in High School?

In a couple years, it will be 30 years since a graduated from high school (go ahead, do the math, I’ll wait). It’s an experience that has come and gone. I was not athletic back in the day, nor was I a particularly good student. I was bright, but lazy, and desperate to get out of the place where I was–a 2,000-student public secondary school in the Chicago suburbs. It was not a particularly dangerous place, but it was not 100% nerd/wimp/geek-friendly, and that was who I was 20+ years ago.

I don’t dwell on high school that much anymore. It certainly wasn’t the best of times, but it wasn’t the worst of times (that was junior high). I was eager to get out, and in fact did graduate a semester early to be clear of the place. But I cannot deny that my adolescence shaped me, as it does everyone.

Why do I even bring up high school as a blog topic now? I had an extended text chat with one of my female friends from back-in-the-day this evening, and it got me to thinking. The friend in question was not a “girlfriend,” but someone who thought well enough of me to invite me to her church as a way of helping me find somewhere that I might belong. The church didn’t work out, but I don’t blame the friend for the mismatch. I just marched to the beat of a very different drummer, and it would take a few more decades, in and out of church, to figure out who I was as a human being.

However, as far as my high school experience goes, the conversation with my friend was surprisingly eye-opening. I learned that a mutual friend had wanted to “come out,” but had not until after high school, and that he had passed away years ago. I had to silently mourn for someone who had, at least on my terms, been a good and decent person. I learned about some of the problems in my friend’s personal situation, of which I knew nothing at the time, but her story helped me better understand (now) why she might have sought the need to belong to a group of moral Christians.

And perhaps I learned how little I knew about some of my peers. Yet many of us struggled during that age range when hormones are dominant and maturity…not so much. And one must combine those hormones with whatever situation the adults in our lives added to them; then you realize how screwed up we all were…or are. Well-meaning parents and school administrators might do their best in the 21st century to eliminate “bullying” and other behaviors, but one way or another, human beings are simultaneously social and solitary animals, and we learn most of our hardest lessons by making social errors with our peers. And those lessons carry forward into our adulthood.

If I learned anything important in my teens, it’s that social problems of that age range are temporary and should be taken with a large lick of sodium chloride. I learned how to find happiness and satisfaction in solitary interests and pursuits, such as reading and writing. I learned to keep a positive attitude about the future, especially if the present sucked, which in high school it often did. And maybe I learned to like myself a little better because if I didn’t do that, it seemed certain that no one else would.

But I won’t kid you: some of the emotional scars from back-in-the-day remain. It was really difficult to thank the guy who, at the time, was the toughest of the tough guys and yet also the guy who told the bullies to leave me alone. I was glad I thanked him, but yet how many of us really like to admit that we “survived” some period of our growing-up period thanks to the munificence of another person?

I was bad at dating in my teens, and I’m still bad at it, perhaps because of all the confidence I allowed to be taken from me at that age.

And lastly, I suppose the important part about the emotional scar tissue we acquire when we’re young and impressionable is that it stays with us much longer than we might expect.

Our social expectations–for good or ill–are set in our teens. Sometimes they are set accidentally, as we have some experiences that make us say, “I will never do that again!” Or sometimes we have experiences (good or bad) that lead us to believe that life will always be this way, and that is the pattern that is imprinted on our lives from that time forward.

It’s bizarre, hilarious, nasty, hormonal, ugly, and terrifically human all at once. I won’t pretend that it was all wholly bad, nor that it was some sort of adolescent utopia. Somehow or other, I learned to interact with other people, and nothing teaches that faster than the daily series of potential foul-ups that constitute high school. While those who really enjoyed high school might frown on this characterization, I think it’s safe to say that we all endure our teenage years, and eventually we use those times to help us become useful adults…or not.

Yuri’s Night 2015

LogoYurisNight_WHITEring_TRANSPARENTbackground250x250As a practicing introvert, I don’t make a big habit of getting out into public for large parties. Once a year, I make an exception for Yuri’s Night. For the uninitiated, Yuri’s Night is an excuse for space geeks and other space-interested folks to get together and celebrate the anniversary of the first human to fly into space, Yuri Gagarin. The brainchild of Loretta Hidalgo (now Hidalgo Whitesides), whose birthday is April 12, the original concept was sold as a “Cinco de Mayo or St. Patrick’s Day for space geeks.” The concept went viral quickly, with the “official” site (Loretta’s, of course) providing logos, selling t-shirts, sharing party sites, and offering tips for setting up one’s own festival.

What exactly happens at a Yuri’s Night party? Truth be told, it varies. Some folks show up in space- or science fiction-related costumes. Some folks plaster Yuri Gagarin temporary tattoos on their bodies, like my buddy Laura Seward Forczyk.

LauraWhat else happens? Well, space people show up just to hang around other space people. And by space people, I guess I mean those of us who are fascinated by space exploration or even actually work in the space industry–NASA, military, or private sector. Depending on the dedication, organization, and resources of the people involved, It can be a party in a bar, which is what we did for the first Yuri’s Night in Huntsville (thanks to Laura for reminding me! And yes, that’s me in the Hoban Washburne shirt below)…

Laura Bart and Emily…to a takeover of a wine shop with a space art installation and band, as they had at Bacchae Wine Bar in Cape Canaveral, Florida last night…

image3 image4 image5 image6 image8…to a full-blown invasion of the Space & Rocket Center in Huntsville…Under the Saturn VThe point being, hey, it’s an excuse to party, have fun, be a tad silly, and hang out with people who share a common interest in, and love for, space exploration. Is there drinking? Certainly. Par for the course, I suppose. But the point isn’t just drinking, like other holiday gatherings I could name. And sometimes you can even do a little good. I recall that at least one of the Huntsville events raised money for Court Appointed Juvenile Advocates (CAJA). These are “my people,” so of course I join in, even if it gets a little loud at times.


I always learn something or talk to interesting people at Yuri’s Night. This year, one of my interesting talks included Chris Lewicki, CEO of Planetary Resources, who was in Florida because his company’s Arkyd 3R satellite was about to be launched to the International Space Station. From ISS, it will be launched into a low-Earth orbit from the Kibo science module. Once in its proper orbit, it will test technologies that will eventually lead to an asteroid-detecting and -prospecting spacecraft.

Chris Lewicki Ryan Kobrick Me
From left to right, Chris Lewicki (Planetary Resources), Ryan Kobrick (Space Florida), and Your Humble Narrator, babbling on in my Science Cheerleader t-shirt


Another worthwhile chat I had was with Gabriel Rothblatt, a lawyer and space advocate who recently ran for Congress in Florida’s 8th District (the Space Coast, of course!). His big interest when we talked was in streamlining the process for commercial space companies that want to launch their rockets out of Cape Canaveral Air Force Station (CCAFS). He’s advocating for a “Port Authority” sort of structure, where the actual Port of Cape Canaveral would also have launch approval authority–from cruise ships to space ships!–and any potential launch customers would only have to go through one set of red tape to get approvals.

For instance, if SpaceX wants to launch off of Launch Complex 39A, they have to get approvals from NASA for use of the facilities but also from the U.S. Air Force, which maintains the Eastern Range off the Florida coast. A Port Authority for the Space Coast would maintain its existing facilities plus a few of the launch pads at CCAFS, which would be converted to commercial use. It would be the Port Authority’s job to centralize approvals so that a launch customer would only have to go through one round of red tape instead of two or more.

Rothblatt was also interested in some of the “singularity” technologies, including nanotechnology. Nanotech, theoretically, could extend life spans by providing people with molecule-sized robots in their bloodstreams that would kill things like cancer, clear out cholesterol, etc. Why get interested in longevity? Aside from extending life spans, it could change the dynamics of space investments. Rothblatt reasons that if people were living 150-200 years instead of 70-100, they might be more willing to invest in ventures such as space settlements, which will take decades beyond the usual planning (or investing…or even thinking) horizons of most people alive today.

A third cause Rothblatt advocates for is space settlement. “Fifty years ago, we had to send humans,” he said. “The computers weren’t that good or that fast. Now they’re getting to the point where they can most of the basic things without the need for humans. Space settlement is the only compelling reason to send humans into space” long-term. It’s hard to argue. Settlements mean families, communities, businesses, cultures, and all the things that (so far) only humans do. A lot of what he was saying sounded familiar, so I asked if he’d been talking with Rick Tumlinson. Indeed he had, which was why he was talking to Tumlinson’s New Worlds Institute about space settlement.

There are exciting things happening in the space business. It’s not quite that NASA-centric vision that America had in the 1960s, but a lot of our rapidly developing technologies are making space more democratized and, eventually, more accessible. And perhaps, more hopefully, dedicated individuals are willing to run for Congress to promote a technologically promising future. It’s that sort of thinking that makes even an introverted space geek like me happy he goes to a loud party once a year.